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Computational constraints currently limit exact multipoint linkage analysis to pedigrees of moderate size. We
introduce new algorithms that allow analysis of larger pedigrees by reducing the time and memory requirements
of the computation. We use the observed pedigree genotypes to reduce the number of inheritance patterns that
need to be considered. The algorithms are implemented in a new version (version 2.1) of the software package
GENEHUNTER. Performance gains depend on marker heterozygosity and on the number of pedigree members
available for genotyping, but typically are 10–1,000-fold, compared with the performance of the previous release
(version 2.0). As a result, families with up to 30 bits of inheritance information have been analyzed, and further
increases in family size are feasible. In addition to computation of linkage statistics and haplotype determination,
GENEHUNTER can also perform single-locus and multilocus transmission/disequilibrium tests. We describe and
implement a set of permutation tests that allow determination of empirical significance levels in the presence of
linkage disequilibrium among marker loci.

Introduction

All inheritance information available in large pedigrees
genotyped with hundreds of polymorphic markers can-
not be extracted by current methods. The computational
complexity of the problem grows rapidly as the number
of markers and pedigree members considered simulta-
neously increases. Available algorithms scale exponen-
tially either with the number of markers (Elston and
Stewart 1971) or with the number of pedigree members
(Lander and Green 1987). Recent advancements in both
types of algorithms have made it practical to perform
simultaneous analysis of several markers by the Elston-
Stewart algorithm (Cottingham et al. 1993; O’Connell
and Weeks 1995), as well as analysis of general pedigrees
of moderate size by the Lander-Green hidden-Markov-
model (HMM) approach (Kruglyak et al. 1996; Krug-
lyak and Lander 1998; Gudbjartsson et al. 2000). In
addition to methods that offer exact likelihood esti-
mates, there have been some promising developments
utilizing sampling (Monte Carlo)-based techniques (So-
bel and Lange 1993, 1996; Heath 1997). This progress
in multipoint linkage analysis has aided the genetic dis-
section of human diseases. Nonetheless, multipoint anal-
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ysis is still limited by the computational burden involved
in the analysis of large families. Such limitations hamper
computation of linkage statistics, as well as reconstruc-
tion of haplotypes.

The ability of the HMM approach to simultaneously
consider a large number of genetic markers has made it
a widely used method for analysis of data generated with
today’s dense genetic maps. In this article, we present a
set of improvements to this approach that allow rapid
multipoint analysis of larger pedigrees, provided that the
majority of the pedigree members are available for ge-
notyping. We have implemented the new algorithms in
the genetic analysis program GENEHUNTER version
2.1. Compared with the previous release (version 2.0),
version 2.1 has efficiency gains in central-processing-unit
(CPU) and memory requirements that are 10–1,000-fold
in typical families. GENEHUNTER provides an inte-
grated approach to parametric and nonparametric link-
age analysis. Multipoint analysis of a given pedigree is
separated into two steps (Kruglyak et al. 1996): (1) com-
putation of probability distribution of inheritance pat-
terns (which depends only on the marker genotypes) and
(2) computation of a statistic that quantifies linkage
(which, conditional on an inheritance pattern, depends
only on the phenotypes). The first step is computationally
intensive, whereas the second step is, in most cases, com-
putationally trivial. Thus, most of the new methods de-
scribed below are aimed at significantly reducing the time
and memory needed to perform the first step. The im-
provements are based on reducing the number of inher-
itance patterns (inheritance vectors) that must be consid-
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ered in the computation. The exponential growth in time
and memory is due to the growth of the inheritance-
vector space (state space). Observation of marker geno-
types typically restricts the vector space, because inher-
itance patterns incompatible with the observed marker
genotypes have probability exactly equal to zero. For
example, a single meiosis with a known outcome reduces
by half the number of inheritance vectors with nonzero
inheritance probability at that marker location. There-
fore, we can reduce both time and memory requirements
by considering only the subspace of the vector space
whose members are inheritance vectors with nonzero
probability. Because state-space reduction through use of
genotyping information is marker specific, we face the
challenge of computing the HMM transitions, which are
necessary for combining the information from multiple
markers, without resorting to the full state-space repre-
sentation. Our innovation here is a method (formally a
change of the coordinate system) that permits us to ex-
ecute the transitions by using only meioses that are not
fixed by observation of marker genotypes. In addition,
we present an algorithm that speeds computation of the
NPL_all (Whittemore and Halpern 1994) statistic for
nonparametric linkage analysis. Although performance
of the new algorithms is highly dependent on genotype
information content, we do not impose any restrictions
on the pedigree structures that can be analyzed by GENE-
HUNTER. No approximations are used, and, in the limit
of low information content, the new version has the same
time and memory requirements as the does the original
code (GENEHUNTER version 2.0).

In addition to computation of linkage statistics and
haplotype determination, GENEHUNTER also can per-
form the transmission/disequilibrium test (TDT). Single-
and multilocus TDTs have been available since the re-
lease of GENEHUNTER version 2.0 (Daly et al. 1998).
Here we present a procedure to compute empirical sig-
nificance levels when several closely spaced markers are
genotyped. In such cases, significance of results must be
corrected for multiple testing; however, the traditional
Bonferroni correction is likely to be extremely conser-
vative, because of the nonindependence of the multiple
tests (i.e., alleles at the same marker and alleles at nearby
markers in linkage disequilibrium [LD]). Here we im-
plement a permutation approach that accurately esti-
mates significance in the presence of these factors.

Throughout this article, we use the conventions em-
ployed in a previous publication by Kruglyak et al.
(1996). Definitions of inheritance vectors and the HMM
methodology can be found in that publication. The pre-
sent article is organized as follows. In the next section,
we describe the algorithms used to speed multipoint
analysis; users of GENEHUNTER who are not inter-
ested in mathematical details may skip this section. In
the Computer Implementation section, we introduce a

set of commands that allow efficient use of the software.
We next describe in detail the permutation method that
allows definition of TDT significance levels in the pres-
ence of LD. We then apply the new software to simu-
lated and actual data, present performance results, and
comment on the influence that pedigree structure and
marker polymorphism have on efficiency gains. We con-
clude with a brief discussion.

Algorithmic Improvements

In the HMM approach, time and memory requirements
for multipoint linkage analysis scale exponentially with
the number of meioses considered. Currently, the num-
ber of inheritance patterns that are evaluated and stored
per marker is , where n is the number of in-2n�fN p 2
dividuals with ancestors in the pedigree and f is the num-
ber of pedigree founders. We present three methods that
effectively reduce N.

For a pedigree genotyped with m markers, storage
requirements are easily shown to be (m # 3 � 4.5) #

bytes. Unlike the situation with memory requi-8 # N
rements, the time that it takes to compute multipoint
scores is not a simple function of markers and meioses
considered. Although computation time scales with N,
it also depends on details such as the presence of in-
breeding loops and the fraction of pedigree members
available for genotyping, We can divide the computa-
tion into three parts:

1. Calculation of inheritance probabilities at each
marker, based only on the data for that marker (single-
point probabilities);
2. Calculation of multipoint-inheritance probabilities,
through use of HMM marker-to-marker transitions;
3. Calculation of linkage statistics (of these, the most
CPU intensive is the calculation of the Halpern-Whit-
temore statistic for nonparametric linkage, NPL_all).

Historically, the most significant time requirement for
multipoint analysis has been the vector-matrix multi-
plication necessary to perform the second step. After
speedups resulting from the application of fast Fourier
transform (FFT) methods (Kruglyak and Lander 1998),
approximately equal time is spent on each one of the
three steps in GENEHUNTER version 2.0. Thus, in
order to achieve practical speed gains, all three steps
must be improved. We introduce the following:

1. Efficient identification of classes of inheritance vectors
that are not compatible with the observed genotypes.
We use this information to effectively reduce the inher-
itance-vector space. For classes of inheritance vectors
that are not compatible with the observed phenotypes,
we do not compute or store single-point–inheritance
probabilities or multipoint-inheritance probabilities.
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Figure 1 Example of 1-bit restrictions

2. Formalism that allows us to compute multipoint-in-
heritance probabilities (the vector-matrix multiplication
necessary for the transition step of the HMM) without
resorting to the full state-space representation.
3. Efficient computation and storage of the NPL_all
statistic.

In this presentation, we make a distinction between
transition-probability distributions and cumulative-
probability distributions. The transition-probability dis-
tribution is the inheritance probability anywhere on the
genome, based on marker data to the left or right of
that position (but not at the position itself); the cu-
mulative-probability distribution at a genotyped marker
is the product of transition probabilities and single-
point probabilities at that marker. From this definition,
it follows that state-space restrictions to the single-point
distribution at a marker also apply to the cumulative-
probability distribution at that marker.

Efficient Reduction of Inheritance-State Space

We identify classes of inheritance vectors incompatible
with the observed genotypes, using an iterative approach.
We apply the algorithm used by GENEHUNTER for the
computation of single-point–inheritance probabilities in
subsets of the pedigree. In the previous implementation,
single-point–inheritance probabilities were computed for
the entire pedigree, once per inheritance vector. If no allele
configuration was compatible with the inheritance vector,
the single-point probability was set to zero. Although this
approach provides the complete set of incompatible in-
heritance vectors, CPU and memory requirements grow
exponentially with the size of the pedigree. We can dra-
matically reduce the computational cost if we apply the
algorithm in subsets of the pedigree and accumulate the
restrictions found. We can then compute and store single-
point–inheritance probabilities for the full pedigree, but
only for the subset of inheritance vectors compatible with
the observed genotypes. This iterative approach is prof-
itable because most restrictions are local; they are defined
by the siblings, children, parents, and grandparents of a
pedigree member. Once a restriction is found by means
of such local relationships, consideration of additional
pedigree subsets may provide further restrictions to allele
assignment, but it cannot remove already-existing re-
strictions.

It is not memory efficient to store lists of incompatible
inheritance vectors; instead, a few simple rules can capture
the restrictions. As an example, consider the pedigree of
figure 1; we represent the inheritance pattern at each point
on the chromosome by a binary inheritance vector, —n p

), whose coordinates describe the(p ,m ,p ,m , … p ,m1 1 2 2 n n

outcomes of paternal and maternal meioses. Founder-
phase symmetry (Kruglyak et al. 1996) allows us to set
the bits of individual 21 to . At the(p ,m ) p (0,0)21 21

marker, the maternal bits of individuals 22 and 23 are
then obligated to be 0 and 1, respectively. After dropping
the bits of individual 21 because they are fixed by founder-
phase symmetry, we can write (p ,m ,p ,m ) p22 22 23 23

. Here x denotes a bit that is not restricted and(x,0,x,1)
that can take a value of either 0 or 1. In this case, ob-
servation of genotypes reduces the number of compatible
inheritance vectors from 16 to 4. We can store this re-
striction, using just two integers. One integer is used as
a mask that specifies the bits that are fixed by the observed
genotypes, whereas the other integer contains the oblig-
atory values of the fixed bits. In this example, the two
integers in binary format are (0101) and (0100). Given
an inheritance vector, a mask-and-compare operation is
sufficient to check for compatibility with the observed
genotypes. This also holds if the example given above is
a subset of a larger pedigree; as more meioses are con-
strained, we can keep accumulating any restrictions, using
the same pair of integers.

We can define additional constraints. For the pedigree
in figure 2 there are no meioses that are exactly deter-
mined, but there are constraints on the relative values
of bits that belong to the same individual. Depending
on the observed genotype, bits that belong to the same
individual obey one of two rules: either they are equal
or they are opposite. For individual 22 we can write

, and for individuals 23 and 24 we can writep p mi i

. Here we note as the opposite of meiosis mi.
— —p p m mi i i

Again, storage of the constraints requires just a few in-
tegers (in this case, four), and we can quickly check for
compatibility with the observed genotypes, using a series
of mask, shift, exclusive-or, and compare operations. In
the same example, we can illustrate an additional con-
straint. For individuals 23 and 24, the choice of the
configuration makes the configuration(p ,m ) p (0,1)23 23

the only choice compatible with the(p ,m ) p (1,0)24 24

observed genotypes. Among the subset of inheritance
vectors that obey the first constraint, we can define the
relationship .— —(p ,m ) p (p ,m )23 23 24 24
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Figure 2 Example of 2-bit restrictions. For each individual, all
possible meioses are shown, and, next to each pair of meioses, com-
patibility or noncompatibility with the observed genotype is indicated,
by a plus sign (�) or a minus sign (�), respectively.

The examples illustrate 1-bit, 2-bit, and 4-bit con-
straints. We can continue to define more-complicated
constraints that span an ever-larger number of bits, but
the gains in state-space reduction must be weighed
against the number of operations necessary to check each
inheritance vector for compatibility. In the present im-
plementation, we use only the simplest, 1-bit restrictions,
The specific algorithm, executed once per marker, is as
follows:

1. Define all sibships in the pedigree.
2. For each sibship, find all restricted meioses, using

as many as four grandparents, two parents, and sibs.
The remaining steps are executed once per sibship.

3. Full siblings who share the same genotype must
share the same inheritance-vector restrictions. Because
there is a maximum of four unique genotypes per sib-
ship, we can set an upper limit to the computation. De-
fine as “representative sibs” the first n sibs ( ) withn � 4
a unique genotype, plus a sib used to set founder phase.
The use of representative sibs defines an upper limit to
the number of inheritance vectors that we examine per
nuclear family. The worst-case scenario is a consan-
guineous pedigree, in which inheritance142 p 16,384
vectors must be examined. A more typical situation is a
nonconsanguineous pedigree in which at least one of the
parents is a founder. In such a situation, we need to
examine inheritance vectors. Because there112 p 2,048
is a well-defined upper limit, identification of state-space
restrictions grows linearly with the number of nuclear
families in the pedigree.

4. Given the grandparents, parents, and representative
sibs, apply the method used for the computation of sin-
gle-point probabilities and temporarily store the result.

5. For each sibship, use the list of incompatible in-

heritance vectors to update the set of constrained
meioses.

The method is general and does not impose any re-
strictions on either the pedigree structure or the number
of missing genotypes. Relationships between meioses are
deduced by simple inspection of the temporary list of
incompatible inheritance vectors. To increase the effi-
ciency of the algorithm, the sibships are ordered so that
ancestors always precede descendants. Therefore, some
of the parental meioses are often fixed by a previous
iteration, further reducing the number of bits per nuclear
family. Not only is the calculation faster, but information
on parental meioses from the rest of the pedigree is
passed to the “current” sibship.

In addition to exact multipoint analysis, this algorithm
can be applied to sampling (i.e., Monte Carlo) ap-
proaches. The set of integer-bit maps defines a conven-
ient transformation to a contiguous state space where
all bits that are not fixed by genotyping are adjacent and
allowed to vary freely. Then the sampling can be re-
stricted to a smaller state space with a much higher per-
centage of inheritance vectors compatible with the ob-
served marker genotypes. In general, the procedure does
not produce the complete set of inheritance vectors that
are not compatible with the observed genotypes. The
question of completeness can be separated into two: (1)
What is the fraction of incompatible inheritance patterns
found after consideration of subsets of the original ped-
igree? and (2) Even if all incompatible inheritance pat-
terns are identified, what is the fraction that can be de-
scribed by use of sets of integers for mask and compare
operations? Answers to both questions are highly de-
pendent on pedigree structure, number of missing gen-
otypes, and number of alleles per marker. This makes it
difficult to provide a general, concise answer to the ques-
tion of completeness. Instead, we offer practical consid-
erations that can guide alternative implementations of
the algorithm. Our choice of subpedigree structure is
practical because, for a set of full sibs, there is an in-
formation cutoff after two generations of genotyped an-
cestors. Consideration of additional ancestors does not
produce additional constraints. We can consider sibships
with genotyped ancestors separated by several ungen-
otyped generations, but this is an unlikely scenario in
human and animal pedigrees. A promising alternative
structure is simultaneous consideration either of full sibs
and half-sibs or of first cousins. In the examples given
above, we have shown how, by using integer-bit maps
that allow simultaneous consideration of an ever larger
number of bits, we can increase the number of incom-
patible inheritance patterns that we can describe. An
alternative approach is to keep one full list of compatible
inheritance patterns per sibship. Then we can generate
compatible inheritance patterns for the whole pedigree,
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by combining lists of valid vectors. This is practical only
when we consider pedigrees with a limited number of
sibs per family. In the current implementation, we chose
to use only 1-bit restrictions. It is the only class of re-
strictions that we currently use for computation of mul-
tipoint-inheritance probabilities, without resorting to the
full state-space representation. Incorporation of 2-bit
and 4-bit restrictions would accelerate the computation
of single-point–inheritance probabilities but, without
additional algorithmic improvements, would not have a
significant impact on overall performance.

It is easy to quantify the computational gains. The
computational cost per sibship has a well-defined upper
bound, and in practice it is negligible. Only a fraction
of a second is needed to accumulate all inheritance-pat-
tern restrictions for any pedigree, independent of size or
pedigree structure. We store single-point–inheritance
and multipoint-inheritance probabilities only for inher-
itance patterns that satisfy the 1-bit constraints; For all
other inheritance patterns, the implied value is zero. Be-
cause each 1-bit constraint cuts the vector-space size by
a factor of two, the computational gains are exponential
as a function of the number of bits constrained by ge-
notyping. At a specific marker, if k of meioses are2n � f
constrained, then we need 2k times less time and memory
to complete the calculation. Obviously, maximum gains
in speed and memory are attained for pedigrees that are
fully genotyped with highly polymorphic markers.

In addition to state-space restrictions, we use a simple
rule to further reduce the computation of single-
point–inheritance probabilities. Meioses of a genotyped,
homozygous parent can be either paternal or maternal,
with equal probability. Therefore, the bits representing
these meioses define an equivalence class. We calculate
single-point–inheritance probabilities for only one mem-
ber of the class and assign the result to all class members.

Vector-Matrix Multiplication

We limit the discussion to 1-bit restrictions. Consider
two markers, m1 and m2, with recombination fraction
v. Assume that and are the num-k � 2n � f k � 2n � f1 2

ber of meioses with known outcome at m1 and m2, re-
spectively. We have shown that we can reduce storage
requirements per marker for single-point probabilities,
from to and , for m1

2n�f k k1 2N p 2 N p N/2 N p N/21 2

and m2, respectively. Although there are N nonzero tran-
sition probabilities from m1 to m2, we need not compute
them all. At marker m2, we are interested in computation
and storage of cumulative left/right probabilities (the
product of transition probabilities # single-point prob-
abilities), and we know in advance that only N p2

of them can be different than zero. In Appendixk2N/2
A we show how to replace the ( )-bit problem2n � f
with a -bit problem and the N2 operations(2n � f � k )1

necessary to map the result to the reduced state space
at m2.

For marker-to-marker transitions, we have exponen-
tial gains in time and memory requirements, because we
can take advantage of state-space restrictions at both
markers. This is not the case when we compute linkage
statistics between markers, because all inheritance vec-
tors have a finite, nonzero probability of occurrence.
Although we are forced to calculate cumulative proba-
bilities for N states, we can still perform the calculation
without allocating additional memory. For statistics be-
tween markers, we simply accumulate the product of
inheritance probability and the scoring function for each
inheritance vector. Therefore, we do not need to save
the N inheritance probabilities to memory. We first ex-
ecute two reduced FFTs (two HMM transitions, one
with bits and one with bits) and2n � f � k 2n � f � k1 2

use these results to compute each inheritance probability,
as needed.

Computation of the Whittemore-Halpern Statistic
(NPL_all)

This statistic quantifies the degree of allele sharing
among affected individuals. Let a denote the number of
affected individuals in a pedigree. Given an inheritance
vector , there are 2a ways in which we can choose one—n
of the two founder alleles for each affected individual.
We denote by h such a sampling configuration and by
bi(h) the multiplicity of founder allele i in configuration
h. The statistic is defined as

2f

�a—S (n) p 2 � b (h)! .�all i[ ]
i�1h

Computation of the statistic requires op-2n�f a2 # 2 # S
erations, where 22n�f is the number of inheritance vec-
tors, 2a is the number of sampling configurations, and
S is the number of operations needed per configuration.

We modify the original algorithm as follows.

1. We reduce the number of inheritance vectors that
we need to evaluate. We do not repeat the calculation
for sequential inheritance vectors that produce the same
founder-allele configuration among affected individuals
and that therefore produce the same value for the sta-
tistic. This is the case for two inheritance vectors that
are identical except for bits that correspond to meioses
of individuals who are not affected and who have no
descendents in the pedigree. In addition to reducing the
number of operations necessary, we use the modification
to reduce the memory necessary to store the result of
the computation.

2. We decrease the number of operations per config-
uration. Instead of counting the number of shared foun-
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der alleles for each one of the 2a configurations, we ex-
ecute S operations once and then find the value of the
statistic relative to the previous configuration. A detailed
description can be found in Appendix B.

After these changes, the computation of nonpara-
metric statistics becomes several times faster than the
computation of parametric LOD scores.

Computer Implementation

In this section we present new commands that add flex-
ibility to the use of the software package, and we discuss
some limitations of the current implementation. We in-
troduce three new commands:

1. Compute sharing off: While scanning a pedigree,
the program by default accumulates the identity-by-de-
scent (IBD)–sharing probabilities (i.e., the IBD matrix)
for all pairs of relatives in the pedigree. The IBD matrix
is used for the computation of TDT scores, sib-pair sta-
tistics, and variance-components analysis. If such anal-
yses are not required, the user should turn off stor-
age of the IBD matrix, using the command compute
sharing off. Time requirements for the accumulation of
the IBD matrix are negligible, but there are cases in
which storage requirements are significant; for example,
for a large collection of highly informative pedigrees,
storage of the IBD matrix exceeds the memory required
for storage of multipoint-inheritance probabilities. Note
that to accumulate the IBD matrix we first have to com-
pute multipoint inheritance. Therefore, all analyses
methods benefit from the speedups introduced by state-
space reduction.

2. Dump requirements: It would be useful to provide
a set of rules for the estimation of computational re-
quirements, given pedigree structure and marker hetero-
zygosity. Unfortunately, human pedigree structures are
irregular, and it is difficult to provide a concise answer.
For rough estimates, we can use the following argument.
On the basis of marker genotypes, our method separates
meioses into two classes: those for which the outcome
is exactly known and those for which both outcomes
are possible. Meioses for which the outcome is known
do not enter the calculation; therefore, the problem
scales as the exponent of the meioses that do not have
fixed outcomes, rather than as the exponent of the total
number of meioses. An important issue in the estimation
of computational requirements is the presence of mark-
ers that offer very little inheritance information; for ex-
ample, consider a pedigree with 80% of its members
available for genotyping but only 20% genotyped for a
particular marker. In this case, we will have dramatic
improvements for all but the marginal marker. At that
position, the scale of the problem reverts to (or close to)
the original size, and state-space reduction has little im-

pact on overall performance. For a more accurate esti-
mation, we would need a complex list of rules. We
choose instead to let the software quickly estimate com-
putational requirements, given a specific, genotyped ped-
igree. This simple calculation takes advantage of rapid
identification of state-space restrictions and requires just
a fraction of a second for any pedigree structure or size.
The command dump requirements on/off sets a flag that
modifies the behavior of the program. When the flag is
set, scanning a pedigree simply reports overall memory
requirements and memory requirements per marker. The
researcher can add/subtract pedigree members or modify
the marker map and get immediate feedback before pro-
ceeding with the full analysis. Time requirements are not
reported, but, in the absence of inbreeding loops, it is
safe to assume that time and memory requirements scale
proportionally. We report only memory allocation that
scales exponentially with pedigree size and do not report
requirements for storage of the IBD matrix.

3. Haplotype method Viterbi and haplotype method
MaxProb: There are two possible solutions to haplotype
reconstruction (Rabiner 1989; Kruglyak et al. 1996).
One selects the most likely inheritance vector at each
locus, whereas the other (based on the Viterbi algorithm)
selects the most likely set of vectors, considering all loci
simultaneously. Although the second solution has the-
oretical appeal because it finds a global maximum, in
practice both methods yield similar results, especially
when used for the analysis of pedigrees with high in-
formation content. The first method is mentioned in an
article by Kruglyak et al. (1996) but is available, for the
first time, with this release of GENEHUNTER. State-
space reduction can be used to reduce the time and mem-
ory requirements of both algorithms. Currently, only the
first approach is improved, and it is used by default (or
through the command haplo method MaxProb). The
Viterbi algorithm is still available (command haplo
method Viterbi), but it requires the same amount of com-
puter resources as was required in previous releases.
With the first approach, haplotype reconstruction adds
only a few percent to the overall computational time
and does not add to the memory requirements.

With this release of GENEHUNTER, we have made
an effort to avoid storage of inheritance probabilities
at uninformative positions. An example in which un-
informative markers enter the calculation is joint anal-
ysis of pedigrees collected by different research groups
that use different marker sets for gonotyping. Perform-
ing a joint analysis requires a unified marker map that
includes all markers in the data set. Therefore, each
pedigree is genotyped only for a subset of the unified
marker map. GENEHUNTER version 2.0 computed
and stored inheritance probabilities for each pedigree,
at every position on the map, even at positions where
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Figure 3 Simulated -bit pedigree(2n � f) p 30

the pedigree was not genotyped. With the new imple-
mentation (version 2.1), a unique map of informative
markers is automatically created for each family, and
uninformative markers are treated as “positions be-
tween markers.” To identify uninformative markers, we
use a simple rule: if, at most, one individual is genotyped
at a marker, the marker is flagged as uninformative. The
rule is useful not only when data sets are merged, but
also when genotyping fails. In addition to the automatic
removal of this trivial case, the program issues a warn-
ing if a marker is found to be uninformative after com-
putation of single-point–inheritance probabilities. In
cases in which only a few pedigrees are being analyzed,
we encourage investigators to first use the command
dump requirements (see above) and then inspect and,
if it is appropriate, remove markers that have significant
memory requirements. We have used this procedure for
one of the pedigrees analyzed in the Simulated 30-Bit
Pedigree subsection (below).

There are two limitations in this release of GENE-
HUNTER, related to the specific computer implemen-
tation. First, the maximum number of meioses that the
program can process is , where n is the number2n p 32
of nonfounders. The upper limit is not related to lack
of computational resources but to the representation of
inheritance vectors by 32-bit integers. Second, compu-
tation of parametric LOD scores requires a dispropor-
tionate amount of computational resources. We take
advantage of pedigree symmetries to reduce time and
storage requirements for inheritance probabilities and
nonparametric statistics (i.e., “NPL” score). This is not
yet the case for parametric statistics. If parametric LOD
scores are not required, the user should turn LOD com-
putation off (command analysis NPL). In a future re-
lease, we plan to remove both limitations.

TDT Significance Levels in the Presence of LD

The TDT was implemented in GENEHUNTER version
2.0 (Daly et al. 1998). Standard single-marker TDT is
available; in the case of markers with more than two
alleles, the transmission of each allele is tested against the
collection of all other alleles. Multilocus TDT is similarly
performed by counting the cases of transmission and non-
transmission of each haplotype whenever it is observed
in a parent who carries two different haplotypes.

One of the major challenges in the interpretation of
any individual TDT result is the estimation of signifi-
cance. In a typical LD study designed to follow up link-
age to a region, tens to hundreds of markers may be
genotyped, and the actual number of tests performed
after examination of each marker (along with multiple-
marker haplotypes of various lengths) can be consid-
erable. Clearly, in such a case, the x2 P value for a single
result is not a useful indicator of significance, without

some correction for the multiple testing performed. The
simplicity of a Bonferroni correction for the number of
tests performed (e.g., markers # alleles) is appealing,
but the nature of the data renders such a correction
prohibitively conservative. Trivially, the nonindepend-
ence of multiple alleles (microsatellites) and the presence
of very rare alleles (microsatellites and single-nucleotide
polymorphism [SNPs]) prevent a clean application of
the Bonferroni correction. Much more important, how-
ever, is the issue of nonindependence of alleles at dif-
ferent markers (i.e., LD). In densely genotyped regions
where strong LD exists in the overall population under
examination (and not specifically in the disease popu-
lation), many markers can provide nonindependent
(and, in the case of closely spaced SNPs, frequently iden-
tical) TDT results. To apply the Bonferroni correction
in this case could be dangerously conservative. Although
this may be considered an extreme example now, avail-
able SNP maps (Mullikin et al. 2000) are quickly ap-
proaching the density at which LD is to be expected in
general populations. As genotyping technologies follow,
it will be quite reasonable and desirable for researchers
to genotype hundreds to thousands of SNPs in very
small genomic regions, in attempts to follow up a con-
vincing linkage result or to clarify the involvement of
a candidate gene by exhaustively examination of the
variation in and around that gene.

To better address this problem, we have developed a
permutation approach for the estimation of significance,
an approach that is similar to the method that we used
for case-control haplotype comparisons (Laitinen et al.
1997). The method involves generation of artificial data
sets, perfectly matched to the observed data, by ran-
domly permuting whichever chromosome from each
parent is transmitted. Because this process leaves hap-
lotypes intact, any LD present in the population is main-
tained fully in the permuted data sets. Each such data
set is analyzed in the same fashion as are the original
data, and the number of permutations in which a
marker (or haplotype) exceeds the maximum value seen
in the observed data is reported. Also reported is the
number of permutations in which the number of ob-
servations of , .001, and .0001 equals or exceedsP ! .01
the number of such observations in the real data set.
Depending on the degree of background LD, the pres-
ence of several nearby markers with strong TDT results
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Table 1

Relative Memory and Time Requirements for GENEHUNTER
Versions 2.0 and 2.1

CALCULATION

MEMORY

(MB)

FACTORaVersion 2.1 Version 2.0a

30-Bit family:
NPL_all 12 454,656 37,888

26-Bit nimh9002:
NPL_all 2,529 26,880 10.63
NPL_all and LOD 3,041 26,880 8.84

10 18-Bit simulations:b

Missing 0 grandparents:
NPL_all .07–10.53 75 1,041–7
NPL_all and LOD 2.07–12.53 75 36–6

Missing 1 grandparent:
NPL_all .43–10.57 75 173–7
NPL_all and LOD 2.43–12.57 75 7–3

Missing 2 grandparents:
NPL_all 10.63, 25.32 75 7–3
NPL_all and LOD 12.63–27.32 75 6–3

180 Pedigrees:
NPL_all, total (See fig. 7) (See fig. 7) (See fig. 7)

Time
(s)

30-Bit family:
NPL_all 9,392 NA NA

26-Bit nimh9002:
NPL_all 3,382 NA NA
NPL_all and LOD 9,402 NA NA

10 18-Bit simulations:b

Missing 0 grandparents:
NPL_all 31 3,163 102
NPL_all and LOD 184 3,317 18

Missing 1 grandparent:
NPL_all 47 3,165 67
NPL_all and LOD 201 3,320 16

Missing 2 grandparents:
NPL_all 141 3,132 22
NPL_all and LOD 297 3,287 11

180 Pedigrees:
NPL_all, total 37,890 196,525 5

a NA p not available.
b Both the highest and the lowest requirements are shown.

may be an indicator of association that should be con-
sidered in addition to the magnitude of the highest re-
sult. In certain cases in which haplotyping is made dif-
ficult (e.g., incomplete genotyping, small sample size,
inability to resolve transmission from doubly-hetero-
zygous parents, etc.), attention to a cluster of high re-
sults may be a valid surrogate for complete multilocus
haplotype analysis. Along these lines, in an analysis of
SNPs surrounding the APO-E4 variant (Martin et al.
2000), it was noted that no nearby SNP provided evi-
dence of association nearly as strong as the evidence
provided by the E4 variant itself—but that the associ-
ation might be best recognized by way of the cluster of
nominally significant results.

So far, we have made no distinction between single-
marker–based TDT and haplotype-based TDT. As
noted by Dudbridge et al. (2000), when the haplotype
test is used, failure to reconstruct multilocus haplotypes
can introduce a modest inflation of type I error; for
example, it is not possible to reconstruct haplotypes
when two parents share the same heterozygous geno-
type and there is no additional information from nearby
markers to help resolve the phase of the transmission.
Not counting these cases leads to an overestimate of the
strength of gene effect as estimated by transmission ra-
tio. For this reason, an option exists to eliminate such
data from all TDT counts and to present transmission
counts that allow a robust estimate of gene effect (com-
mand dhskip). The correction recommended by Dud-
bridge et al. (2000) can be trivially recovered from these
data. Dudbridge et al. recommend that each case in
which unreconstructed heterozygotes are recovered by
a homozygous offspring be counted as one transmission
rather than as two. With dhskip off these cases are
counted twice, and with dhskip on they are not counted
at all; therefore, addition of half the difference to the
result produces the recommended test.

Performance

We demonstrate the performance of the new algorithms,
using the following sample data sets:

A simulated -bit two-generation family(2n � f ) p 30
(fig. 3): This data set shows how the overall scale of the
problem is reduced and illustrates some practical limi-
tations of the current software implementation.

An actual bit pedigree with five of the(2n � f ) p 26
six founders missing (fig. 4): This data set is more typical
of human pedigrees and illustrates the ability of the new
code to cope with missing genotypes.

A single pedigree structure simulated 10 times (fig. 5):
The pedigree structure remains the same, but meioses
and marker genotypes are generated independently, to
produce 10 replicas of the pedigree. These pedigrees
demonstrate how changes in information content influ-
ence performance, independent of pedigree structure.

A collection of published pedigrees from Genetic
Analysis Workshop 10 (GAW10) (Goldin et al. 1997).
Here we stress improvements specific to the handling of
large collections of pedigrees genotyped by different re-
search groups.

Unless otherwise noted, we report time requirements
for computation of linkage statistics at marker loca-
tions. We used two computer systems to test the code:
A SUN enterprise 450 workstation with 4 GB of mem-
ory and a commodity PC with a 350-MHz Pentium II
processor and 256 MB of memory running Linux. All
time benchmarks given below are for the SUN work-
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Figure 4 Actual -bit pedigree(2n � f) p 26

Figure 5 Simulated -bit pedigree. The same ped-(2n � f) p 18
igree was simulated 10 times.

station. In terms of speed, the two computers required
roughly the same amount of time to complete calcula-
tions that needed !256 MB of memory.

Simulated 30-Bit Pedigree

This is a -bit pedigree(2n � f p 2 # 16 � 2) p 30
(fig. 3 and table 1). After removal of 3 of the 20 markers
from consideration (see below), nonparametric scores at
marker positions can be computed by use of just 12 MB
of memory. In comparison, the memory required by the
previous version of the software is almost 0.5 terabytes
(500,000 MB), a factor of 38,000 higher. The time re-
quired for the computation was ∼2.5 h (9,392 s). For
this problem, we cannot run the previous version of
GENEHUNTER. If a computer with sufficient storage
capacity were available, we extrapolate that the previous
version would need 5 mo to complete the same calcu-
lation (a factor of 1,400).

We generated genotypes for 20 markers with an average
of 4 alleles each. For 3 of the 20 markers, we could not
employ state-space reduction, because none of the indi-
vidual meioses were constrained by observed marker ge-
notypes. These markers were manually removed by a pro-
cedure described above, in the Computer Implementa-
tion section. Of the three markers, two were completely
uninformative because both parents were homozygous.
Therefore, the two markers could be removed from con-
sideration, without any loss of inheritance information.
The third marker was informative, but the current im-
plementation of the software does not take into consid-
eration this 2-bit restriction—that is, two heterozygous
parents with the same genotype. This marker introduces
a huge computational burden (24 GB of storage) for a
very limited return in terms of inheritance information.
Therefore, we chose to remove it from consideration, in
favor of analysis of a larger pedigree. Note that this is
the only instance in which markers were removed by
hand.

Reconstruction of haplotypes increased the analysis

time by 5% and required just a fraction of a percent of
additional memory. Of the two haplotype-reconstruc-
tion algorithms available, we used the maximum-prob-
ability-path option. Details on haplotype reconstruction
can be found above, in the Computer Implementation
section. As mentioned in the Algorithmic Improvements
section, calculation of statistics for positions between
markers has minimal impact on memory allocation but
increases time requirements significantly. For this ex-
ample, we repeated the calculation of nonparametric sta-
tistics, with the additional requirement that scores be
calculated at one or four positions between markers. In
both cases, 12 MB of memory was sufficient. The time
requirements increased from 2.5 h to 30 h or 108 h (5
d), respectively. Evaluation of parametric LOD scores
would require an additional 8 GB of memory storage,
preventing us from calculating them for this example.
This is a section of the code that has not been modified
since the previous release of GENEHUNTER and that
therefore does not exhibit the overall scale reduction that
we see for other parts of the calculation. This example
highlights both the orders-of-magnitude efficiency gains
afforded by state-space reduction and the limitations of
the current software implementation.

Actual 26-Bit Pedigree

This is an actual -bit pedigree(2n � f p 32 � 6) p 26
from GAW10 (fig. 4 and table 1). Five of the six founders
are not genotyped. In addition, among the available in-
dividuals several genotypes are missing. For this pedi-
gree, efficiency gains are a factor of 10 for memory and
a factor of 25 for speed (extrapolation). It is not an
example most favorable for the new computational tech-
niques, but it is representative of what should be ex-
pected for pedigrees with several missing ancestors. The
high percentage of missing individuals reduces the num-
ber of meioses fixed by genotyping. Because our methods
rely on informative markers to reduce the overall scale
of the problem, one or two markers that lack local re-
strictions are sufficient to force the problem size back
to its original scale. Here, 2 of the 16 markers have only
1 of 26 meioses exactly determined on the basis of local
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Figure 6 Comparison of memory (a and b) and time (c and d) requirements for 10 instances of the simulated -bit pedigree(2n � f) p 18
shown in figure 5. Results shown are for GENEHUNTER versions 2.0 and 2.1. The linear plots (a and c) present requirements for the new
version only; requirements for the previous version, which are 75 MB and 316 s, do not fit at this scale. The logarithmic plots (b and d) present
relative requirements scaled to the number of equivalent bits—that is, the number of founder-symmetry–reduced meioses (i.e., ) that the2n � f
previous version can process in the same amount of memory or time.

relationships. As a result, of the 2,145 MB used for
storage of single-point–inheritance and multipoint-in-
heritance probabilities, 1,536 MB are required by these
two markers.

Simulated 18-Bit Pedigree

We compare the efficiency of the previous and current
versions of GENEHUNTER (versions 2.0 and 2.1, re-
spectively), using a simulated pedigree that can be an-
alyzed by both versions of the program. The (2n �

-bit pedigree structure is shown in fig-f p 22 � 4) p 18
ure 5. We analyze 11 markers with an average hetero-
zygosity of 75%. The same pedigree structure is simu-
lated 10 times. For each of the 10 simulations, we use
the same disease position, marker map, and allele fre-
quencies, but we sample founder alleles and segregate
them through the pedigree independently. This sampling
generates pedigrees with different information content,
which, in turn, has an influence on the efficiency of the
computational methods.

For nonparametric statistics (e.g., NPL_all), version
2.0 requires the same amount of memory for each of
the 10 simulations (i.e., 75 MB; see fig. 6); the new
version requires 7–1,000 times less memory, depending
on the pedigree. Analysis of all 10 pedigrees by version

2.0 requires 3,160 s—versus 31 s for version 2.1, a factor
of ∼100 times faster. As with memory, time requirements
vary significantly by replicate, with speed-up factors of
40–135.

A common problem in human pedigrees is that foun-
der DNA is not available. We tested the effect of missing
founders by using the same 10 pedigrees, by deleting
first one and then both grandparental genotypes and
then rerunning the analysis. The results are shown in
table 1. For version 2.0 the computational requirements
remain the same, whereas for the new release of GENE-
HUNTER the memory allocation increases but remains
several times less than what is required by version 2.0.
When one grandparent is removed, we need 7–173 times
less memory; when both are removed, we need 3–4 times
less memory. In terms of speed, the newer version is 102,
67, or 22 times faster when no, one, or two grandparents
are missing, respectively. If, in addition to the marker
locations, we compute statistics for four positions be-
tween markers, the newer version is eight times faster,
and the speed is almost independent of the number of
missing grandparents.

For this example, pedigree structure and affection
status are the same for all 10 pedigrees. Therefore, the
computational cost for the evaluation of parametric
LOD scores remains constant: 2 MB of memory and 15
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Figure 7 Memory requirements for a collection of 180 actual
pedigrees (linear and logarithmic scale). Results shown are for GENE-
HUNTER versions 2.0 and 2.1. The logarithmic plot is scaled to the
number of bits that version 2.0 can process with the same amount of
memory.

s of time, for each pedigree. This is a very small fraction
of the overall requirements of the older version (75 MB
of memory and ∼300 s, per pedigree) but is the dominant
component when the new methods are used. For all 10
pedigrees, calculation of parametric LOD scores requires
150 s, almost five times more than the 31 s needed for
calculation of everything else.

GAW10

The final example illustrates the impact that our im-
provements have on the analysis of a diverse collection
of pedigrees, typical of a large genome scan. We rean-
alyzed 180 families from a published study (Goldin et
al. 1997), using both versions of the program. The data
set is a collection of studies from different research
groups that used different marker sets for genotyping.
As mentioned above, in the Computer Implementation
section, joint analysis requires computation of linkage
statistics at every position on the map, even at positions
where a pedigree was not genotyped. With this release
of GENEHUNTER, a unique map of informative mark-
ers is automatically created for each family, and unin-
formative markers are treated as “positions between
markers.” With this modification and state-space re-
duction, we have orders-of-magnitude improvements in

terms of memory requirements, but the new version is
only a few times faster than the previous release (fig. 7
and table 1). Although we take advantage of state-space
reduction for storage at informative markers, joint anal-
ysis requires computation of linkage statistics at several
uninformative positions. The newer version is approx-
imately four to five times faster, depending on the com-
bination of analysis options (e.g., calculation of para-
metric LOD scores, calculation of scores at five positions
between markers, etc.). Unlike what has been seen in
the previous examples, the speed improvements are
modest; therefore, the choice of analysis options has a
minimal (!20%) impact on relative performance.

Discussion

We have introduced a new approach that significantly
reduces the computational cost of multipoint analysis.
We have attacked the exponential growth of the problem
by using the observed marker genotypes to restrict the
number of inheritance patterns that we need to consider.
We have introduced exact formalism that allows us to
apply the Markov-chain reconstruction step of the
Lander-Green algorithm to only those meioses that have
ambiguous outcome. With the new formalism, the scale
of the computation per marker drops from O(22n�f) to
O(22n�f�k ), where k is the number of meioses with
known outcome at that marker. Because the number of
meioses with known outcome grows proportionally with
pedigree size, the efficiency gains increase exponentially
with the size of the pedigree. The formalism is exact—no
approximations are applied. As shown in the examples
section, we achieve maximum computational efficiency
when the markers used are highly polymorphic and the
number of missing pedigree members is small. Low
marker heterozygosity and missing pedigree members
lower the inheritance-information content of the pedi-
gree. In the limit of very low information content, the
computational requirements are the same as in the older
version of the software. For typical pedigrees, perform-
ance gains are 10–1,000-fold. The improvements that
we have discussed here do not overlap with those dis-
cussed by Gudbjartsson et al. (2000). We achieve ex-
ponential efficiency gains in computing not only single-
point–inheritance probabilities but also multipoint-
inheritance probabilities.

There are classes of local restrictions that we mention
but that we do not use in the current software imple-
mentation. Most important among them is the case of
2-bit restrictions. This is not an important case when
the current generation of highly polymorphic markers
is used. For a marker with four equally frequent alleles,
!10% of all parental pairs share the same heterozygous
genotype; in contrast, if the next generation of more-
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abundant but less-informative genetic markers (i.e.,
SNPs) is used, the number of double heterozygote pairs
is ∼ of all parental pairs. In addition, the number of1

4

uninformative meioses due to homozygous parents in-
creases significantly (Kruglyak 1997). Such low-infor-
mation-content markers, as well as missing pedigree
members, reduce the number of meioses that are fixed
through local relationships, but they generate classes of
equal-probability inheritance vectors. We are working
on a complementary set of methods that accelerate the
calculation by taking advantage of such equivalence
classes. We defer use of 2-bit restrictions to the GENE-
HUNTER software release that will incorporate the
equivalence-class algorithms.

All methods described here have been incorporated
into a new release of the computer package GENE-
HUNTER (i.e., version 2.1). The computer program is
written in C and is freely available (source code in-
cluded) from either the Kruglyak lab website (by anon-
ymous ftp) or via the Index of /ftp/distribution/software/
gh2.1 website.
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Appendix A

Vector-Matrix Multiplication

Assume that there are two markers, m1 and m2, with
recombination fraction v, and that there are k ,k �1 2

meioses with known outcome at m1, m2. We refer2n � f
to such meioses as fixed bits and to all other meioses as
variable bits. We have shown that the number of inher-
itance patterns with nonzero probability of occurrence
at m1 and m2 are, at most, andk1N p N/2 N p1 2

, respectively. Here we show how to perform thek2N/2
vector-matrix multiplication necessary for the recon-
struction of multipoint-inheritance probabilities, with-
out resorting to the full state-space representation.

The HMM formalism (Lander and Green 1987; Ra-
biner 1989; Kruglyak et al. 1996) allows us to compute

multipoint-inheritance probabilities incorporating one
marker at a time. First we compute inheritance proba-
bilities by using single-point information from all markers
to the left of the current marker (i.e., the left probabilities).
We then repeat the same procedure, incorporating marker
information from right to left (i.e., the right probabilities).
Computation of left-probability and right-probability dis-
tributions is referred to as the “reconstruction” step of
the HMM. At each point in the genome the multipoint-
inheritance–probability distribution is the product of left-
probability and right-probability distributions. To incor-
porate each additional marker during the reconstruction
step of the HMM, we need to execute the vector-matrix
multiplication

— ———S(b) p T P(a) . (A1)� ab
—a

Vector P represents the (left/right) cumulative-proba-
bility distribution at m1, whereas vector S represents the
(left/right) transition-probability distribution at m2. We
remind the reader that we have defined the cumulative-
probability distribution at a genotyped marker as being
the product of transition probabilities and single-point
probabilities at that marker. The two probability distri-
butions, P and S, are indexed by inheritance vectors —a
and . The matrix is the transition matrix between

—
——b Tab

the two loci. It is defined as ,h s�hT (s,v) p v (1 � v)a,b

where s is the total number of meioses (bits), and h p
is the Hamming distance (i.e., the number of bits

——H(a,b)
that differ) between the two vectors. The vector-matrix
multiplication is an O(24n) operation. It can be reduced
to an operation by use of the FFT for-2n�fO[(2n � f )2 ]
malism described by Kruglyak and Lander (1998). Al-
though we can expand the probabilities atk1N p N/21

m1 into an N-components inheritance vector and can
use the FFT formalism to execute the transition, this
procedure would revert the scale of the problem back
to ]. We show how to execute the tran-2n�fO[(2n � f )2
sition from m1 to m2 as an 2n�f�k1O[(2n � f � k )2 �1

operation. First we present an outline of the2n�f�k22 ]
method, and then we proceed with the formal proof.

OUTLINE. At each marker, we can define a convenient
coordinate system in which all fixed bits are adjacent
and in which the ranking among fixed and variable bits
remains unchanged; for example, if y denotes fixed bits
and x denotes variable bits, a change of base transforms
the inheritance vector into— —n p (x ,x ,y ,x ,y ) n p3 2 2 1 1

. The advantage is that, in the new co-(y ,y ,x ,x ,x )2 1 3 2 1

ordinate system, all inheritance vectors compatible with
1-bit restrictions are stored sequentially. In general, for
the cumulative probability, we can write — ——P(n) p P(y,x)
and , . Here, represents the k1-bit— — — — —P(y,x) p 0 Gy ( y y0 0

vector in which the coordinates are the obligatory values
of the meioses dictated by 1-bit restrictions. The Ham-
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ming distance H( ) between two vectors and is
— —— —a,b a b

invariant under such a transformation (if both and—a
are transformed in the same way). Thus the transition

—
b

probabilities are also invariant. We execute the vector-
matrix multiplication (transition) from m1 to m2 by using
the coordinate system defined by 1-bit restrictions at m1.
The transition is accomplished in two steps. First we
perform a partial transition, using only the 2n � f �

variable bits at m1. The partial result is a list of prob-k1

abilities St( ). Then we use exact formalism that allows—x
us to compute any transition probability S( ), as a— —y,x
function of St( ) and the Hamming distance H( ). For— — —x y,y0

0, all transition probabilities are other than zero.v (
Calculating them all is an O(N) operation. However,
there is no need to proceed with the whole calculation.
For m2, we use the product of transition probabilities
and single-point probabilities. Therefore, we need to
compute for only of N states. The rest are,k2N p N/22

after multiplication, exactly equal to zero. Thus, we first
execute a partial FFT and then compute transition prob-
abilities only for inheritance patterns that are compati-
ble with 1-bit restrictions at m2. We transform every one
of those vectors to the coordinate system defined at m1,
and we use the exact formula to compute the transition
probability. Transformations between coordinate sys-
tems are performed by a series of precalculated mask-
and-shift operations. There is no need either for trans-
formations to the original coordinate system or for
additional temporary storage.

PROOF. For a pedigree with n members, there are
meioses. The vector-matrix multiplication ofs { 2n

equation (A1) is an O(22s) operation. When the FFT
algorithm (Kruglyak and Lander 1998) is used, the num-
ber of operations necessary to execute the matrix mul-
tiplication is reduced to O(s2s) additions and O(2s) mul-
tiplications. In addition, for f founders in the pedigree,
the algorithm can take advantage of founder-phase sym-
metry, which reduces the FFT from s to bits. Wes � f
will show how to further reduce the number of opera-
tions, by using 1-bit restrictions. First, we derive the
formalism, using all meioses ( bits). Later, we ex-s p 2n
tend the method so that it is applicable to the founder-
symmetry–reduced state space ( bits).s p 2n � f

We prove that, after the change in coordinate system,
the transition probability S( , ) at recombination frac-— —y x
tion v from marker m1 is

— — — — —h k �h1S(y,x) p v (1 � v) S (x), where h p H(y,y ) , (A2)t 0

where St( ) is the transition probability that we compute—x
if we consider only the variable bits. To prove thes � k1

relationship, we use the computational method devel-
oped by Idury and Elston (1997). We can divide the
cumulative-probability vector P at m1 into two vec-

tors—P0 and P1—each half the size of P. The elements
of P0 are indexed by inheritance vectors in which the
lowest-order bit is equal to zero; in P1, the lowest-order
bit is equal to one. Since the sequence of inheritance
patterns in P0,P1 is identical up to one bit, we can rewrite
the matrix-vector multiplication, as follows:

(1 � v)T(s � 1) vT(s � 1) P0T(s)P p [ ][ ]vT(s � 1) (1 � v)T(s � 1) P1

T(s � 1)Q0{ .[ ]T(s � 1)Q1

We have replaced an s bit problem with two -bit(s � 1)
problems; the vectors P0 and P1 have been replaced by

and , respec-Q { (1 � v)P � vP Q { vP � (1 � v)P0 0 1 1 0 1

tively. For the second iteration,

T(s � 2)Q00T(s � 1)Q p0 [ ]T(s � 2)Q10

and

T(s � 2)Q01T(s � 1)Q p .1 [ ]T(s � 2)Q11

After iterations, we have vectors withs�k1 —s � k 2 Q1 x

components each.kt2
PROPOSITION. , .— — —

—Q (y) p 0 Gy ( yx 0

PROOF. After the coordinate-system change,
, . The components of P0 and P1 are— — — —P(y,x) p 0 Gy ( y0

selected by using the lowest-order bit as the selection
criterion. Therefore, the components of the new -s�12
size vectors P0( ) and P1( ) obey the same constraint: the— —a a
first k1 high-order bits of have to be equal to ; oth-— —a y0

erwise, . Since Q0 and Q1 are linear— —P (a) p P (a) p 00 1

combinations of P0 and P1, the same constraint holds for
Q0( ) and Q1( ). We can repeat the same argument up— —a a
to iteration , which proves the proposition.s � k1

After iterations, we need to execute vector-s�k1s � k 21

matrix multiplications—that is, T(k1) . The result is—Qx

trivial, since all but one of the components of are—
—Q (y)x

equal to zero. Thus, the last k1 iterations can be executed
in one step:

— — — —— — —H(y,y ) k �H(y,y )0 1 0— — —S(y,x) p Q p v (1 � v) Q (y ) .y,x x 0

This is the desired relationship up to the replacement of
by St( ), in which . The substi-— —

— —Q (y) x S { T(s � k )Px t 1 y0

tution replaces iterations, each of which requiress � k1
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2s intermediate results, by the same number of iterations
requiring only intermediate results each. We cans�k12
compute by using the iterative procedure—T(s � k )P1 y0

that have we outlined for the computation of T(s)P. In
the comparison of intermediate results, it is trivial to
show that

— —0 y ( y— 0
—Q (y) p .— — —x {S (x) y p yt 0

This concludes the proof for the case in which all meioses
are taken into account.

Now we extend the formalism to the founder-sym-
metry–reduced space. Details on the application of foun-
der symmetry to multipoint analysis can be found in the
work of Kruglyak et al. (1996) and Kruglyak and Lander
(1998). Here we summarize the results. For a pedigree
with f founders, the inheritance vectors can be organized
into equivalence classes with 2f equivalent members
each. Working with a representative from each class re-
duces the number of states in the HMM by a factor of
2f. If a founder has l meioses in the pedigree, one is
arbitrarily set to zero (paternal) and the remaining l �

bits represent the outcome of the founder’s meioses1
relative to the reference phase. Switching the phase of a
founder corresponds to simultaneously switching l bits
representing the founder’s meioses. The 2n-bit inheri-
tance vector is replaced by the ( )-bit inheritance′—n 2n � f
vector . The transition probability S( ) is replaced by′— —n n

the transition probability Sclass( ), the sum of transition′—n
probabilities for all members of the class. In principle,
to compute Sclass( ) by using the formalism outlined′—n
above, we have to use equation (A2) 2f times. We will
see that the sums factorize. Depending on the effect that
1-bit restrictions have on the founder bits, eachl � 1
founder phase can be classified into one of the follow-
ing three categories: a (all bits variable), b (some variable
and some bits fixed), and g (all bits fixed). Here, fa, fb,
and fg represent the number of phases that belong to
each category; therefore, the total number of founder
symmetry bits is . We can reduce the sumsf p f � f � fa b g

by a factor of if we use the FFT algorithm to performfa2
the partial transformation that evaluates St( ). Of the—x
remaining sums, factorize because changingf �f fb g g2 2
founder phase does not change the St( ) used in equation—x
(A2); thus, we have to evaluate equation (A2) only
( ) times.fbf � 2g

To summarize, we have replaced an -size2n�f(N p 2 )
transition by an -size transition plus2n�f�kt(N p 2 )

operations necessary, to evaluate Sclass( ),f ′—bO[N(f � 2 )] ng

by using equation (A2). If there are state-space restric-
tions at the position where we evaluate Sclass( ), then we′—n
need to evaluate equation (A2) far fewer times; if k2 of

bits obey 1-bit restrictions, then the number of2n � f

operations is reduced to . In bothk f2 bO[N/2 )(f � 2 )]g

cases, temporary memory requirements for the transition
are reduced by a factor of .kt2

Appendix B

Whittemore-Halpern Statistic

We represent a configuration of chosen alleles among
a affected individuals with an a - bit-integer number

. The value of each bit representsaC p 0,1,2, … ,(2 � 1)
the choice of founder allele for a particular individual.

In the previous algorithm, the value of C extends from
0 (all alleles paternal) to 2a�1 (all alleles maternal), and,
for each value of C, we execute the following instruc-
tions:

1. Count the multiplicity of each one of 2f founder
alleles. (This is the most time-consuming step.)

2. Evaluate the (factorial-dependent) statistic.

The new algorithm computes the statistic relative to
the previous configuration. Consider that the value of
the statistic is known for a configuration and that the
next configuration differs only by the founder-allele
choice of a single individual. If the individual has foun-
der alleles A and B, then we assume that, in the previous
configuration, we had picked A and that, in the current
configuration, we pick B. To calculate the current value,
we take the following steps:

1. Divide the previous value of the statistic by the
multiplicity of A.

2. Decrease the multiplicity of A.
3. Increase the multiplicity of B.
4. Multiply the statistic by the new multiplicity of B.

To implement the method, we need an algorithm that
allows us to consider the complete set of configurations
while switching one assignment bit at a time; for ex-
ample, for four affected individuals, instead of the se-
quence (binary format) , 0001, 0010, 0011,C p 0000
0100, …, we use the sequence , 0001, 0011,C p 0000
0010, 0110, …, . Such algorithms are used in instrument
building (analog-to-digital conversion) and are referred
to as “gray code.”

Electronic-Database Information

URLs for data in this article are as follows:

Kruglyak lab website, http://www.fhcrc.org/labs/kruglyak/
Downloads/index.html

Index of /ftp/distribution/software/gh2.1, http://www-genome
.wi.mit.edu/ftp/distribution/software/gh2.1
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